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This study presents a technical analysis of steam cleaning and recovery from the calcination
process as a means of decarbonization and energy conservation in alumina refining. Steam
recovery is highest from H, in oxygen-steam (oxy-steam) calcination (Scenario 4) yielding
0.86 t steam/t Al,O3, meeting 43 % of steam demand in digestion based on a reference usage of
2 t steam/t Al,Os. In a fully electrified calciner (Scenario 3), the calculated steam recovery is
0.64 t steam/t Al,Os, followed by natural gas/air calcination (Scenario 1) and hydrogen/air
calcination (Scenario 2), at 0.54-0.55 t steam/t Al,Os. Recovering high-purity steam in H» in oxy-
steam or fully electrified calcination demonstrates higher energy efficiency, consuming 0.54 GJ/t
steam energy, with 9% allocated to gas cleaning. In contrast, recovering steam from air-based
calcination exhibits lower energy efficiency, requiring 0.71 GJ/t steam energy due to the N
dilution in exhaust steam, of which 5 % is attributed to gas separation and cleaning. The calculated
energy consumption in digestion decreases by 36 %, from 6.63 to 4.25 GJ/t AlOs;, when
incorporating steam recovery from H, in oxy-steam calciner, compared to solely relying on natural
gas boilers. Furthermore, CO» emissions for digestion steam generation are expected to reduce by
43 %, from 0.37 to 0.21 t CO,/t Al>Os. Zero carbon emissions in digestion can be achieved by
replacing gas boilers with electric boilers and integrating with calcination steam recovery,
yielding an additional 15 % energy consumption reduction due to the higher efficiency of electric
boilers.

Keywords: Steam cleaning, Efficient steam recovery, Decarbonizing digestion

1. Introduction

In the digeston step of the Bayer process, gibbsitic type bauxite ores are leached in a concentrated
NaOH solution under steam temperature of 175-230 °C and pressures of 6—13 bar in low-
temperature digestion [ 1-3], consuming approximately 60—70 % of the total energy consumption
(10.5 GJ/t AL;Os in average) in current refineries [4]. This steam is primarily generated from
natural gas boilers, which is estimated to emit 0.28-0.64 t CO»/t Al,Os [5]. Accordingly,
decarbonizing the process and achieveing energy conservation are both essential. Instead of
generating steam from fossil fuels, energy can be conserved by recovering generated steam from
gibbsite decomposition, moisture evaporation and fuel combustion during the calcination.
However, the steam is diluted with combustion products and is currently vented to the
atmosphere, along with its latent energy [6]. Capturing and reusing it in digestion offers a potential
to reduce fossil fuel reliance in steam generation and lower overall energy use in digestion.

The conventional calcination process under natural gas/air combustion releases approximately

0.7 t steam/t Al,O3, which contains 1.7 GJ/t Al>Os of latent energy [7]. While the exhausted steam
is diluted with N> and CO,, complicating the recovery process. Chatfield [5] proposed using a wet
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scrubber to condense steam from the flue gas to separate N, and CO,, followed by generating
low-pressure steam in flash tanks. However, the study does not quantify the amount of
recoverable steam or the energy efficiency of the process. This configuration could also be applied
to Ha in air combusted calcination, where the exhaust steam is diluted with ~50 % N». In contrast,
H, in oxygen-steam (oxy-steam) combustion produces high purity steam, with an estimated
amount of 0.8 t steam/t AlOs [8]. Similarly, a fully electrified calcination system eliminates fuel
combustion and produces 0.63 t steam/t Al,O3 of pure steam. These two decarbonized calcination
pathways simplify steam recovery process due to the absence of N2 and CO.. Nevertheless, fine
particulates in the flue gas pose a technical barrier. Despite the availability of existing particulate
control systems such as Electrostatic Precipitator (ESP), or baghouses that remove solid
concentrations to below 50 mg/m? (typically ranging from 29 to 41 mg/m?) [9—11], these levels
may still impact the operation of a mechanical vapor recompression (MVR) system used for steam
compression to digestion pressures. To mitigate this, the current study proposes integrating a
venturi scrubber upstream of the MVR unit for further removing fine particle, particularly those
smaller than 2 pm, due to its high efficiency [12—14]. However, the energy requirements of such
an integrated steam recovery configuration have yet to be quantified.

Given these technical and operational challenges, this study aims to conduct a comparative
evaluation of steam recovery across four calcination pathways: natural gas/air, Ho/air, fully
electrified and H, in oxy-steam calcination. The analysis focuses on net steam recovery rates,
energy penalties from gas separation and cleaning, and the potential energy savings and CO»
emission reductions in digestion through steam recovery integration.

2. Methodologies
2.1 Exit Flue Gas across Different Calcination Scenarios

Table 1 summarizes the flue gas compositions for four calcination pathways, based on process
simulations performed in Aspen Plus. In conventional natural gas/air calcination, the flue gas
comprises approximately 47 % N, and 9 % CO,, together with 43 % steam. Switching to Ho/air
combustion eliminates CO, emissions, however, the flue gas still contains 48 % N introduced
from air. In contrast, H, in oxy-steam calcination generates high-purity steam (above 99 %) and
completely avoids nitrogen dilution by using pure oxy-steam combustion atmosphere, with
recirculated superheated steam for solids transport. The fully electrified calcination eliminates
combustion entirely, generates pure steam. The exhausted gas conditions from the calciner
provide a comparative basis for evaluating the steam recovery potential from each calcination
scenarios.

Table 1. Exit gas condition from calcination (with 120 t/h Al,O3 capacity).

Scenario 1 Scenario 2 Scenario 3 Scenario 4
. . Full H:in oxy-
Natural gas/air Ha/air elec trii)';e d s teamy
Gas volume m?/s 87 90 85 85
Temperature °C 165 165 176 167
Pressure (Absolute) bar 1.06 1.06 1.06 1.06
Gas components (Mass Fraction)
N2 % 46.9 % 47.9 %
CO, % 9.3 %
0, % 1.1 % 4.2 % 0.8 %
H,O % 42.8 % 47.9 % 100.0 % 99.2 %
Total gas flow t/h 210 205 159 163
kg/ 0.64 0.52 0.53
Density of gas m3 0.67
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Figure 7. CO; emission in Scenarios 1a to 4a compared with natural gas boilers.
4. Conclusions

Integrating efficient steam recovery from air-combusted calcination, such as natural gas/air and
Ho/air, can meet approximately 27 % of the steam demand in digestion, thereby reducing
digestion energy use from 6.63 to 5.2 GJ/t Al,Os. Recovering high purity steam from fully
electrified or H» in oxy-steam calcination can meet 32 % and 43 % of the steam usage
respectively, reducing energy consumption to 4.8 and 4.2 GJ/t Al,Os. This corresponds to a CO:
emissions reduction of 27-43 %. Compared to recovering diluted steam from air-combusted
calciners, recovering pure steam demonstrates higher energy efficiency and yields a greater
amount of recoverable steam. The process consumes 0.54 GJ/t steam for pure steam recovery,
compared to 0.71 GJ/t steam for diluted steam recovery. Furthermore, replacing natural gas
boilers with electric boilers achieves an additional 15% energy reduction, reducing digestion
energy use to 3.6 GJ/t Al,Os when incorporating steam recovery. The study highlights the
potential of calcination steam recovery integration for both decarbonization and energy saving in
alumina refining.
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